
MJ4MF - ONE-HUNDRED PROBLEMS

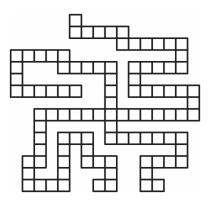
Covered with Squares

As shown below, a square grid with 100 smaller squares can be covered by 100 squares (each measuring 1×1), by 25 squares (each measuring 2×2), or by 13 squares (one 6×6 , two 4×4 , two 3×3 , two 2×2 , and six 1×1).

Find all values of *n* for which it's impossible to cover a 10×10 grid with *n* squares of integer side length.

MJ4MF - ONE - HUNDRED PROBLEMS

It's Gettin' Kinda Heavy


Which weighs more: \$100 worth of quarters, or \$100 worth of dimes?

Why, Certainly

For what value of *n* can you be certain that *n* consecutive positive integers have a product that is divisible by 100?

Around the Square

The figure below consists of 100 unit squares, and adjacent squares share a side. What is the perimeter of the figure?

Magic Rectangles

A magic rectangle is an $m \times n$ array of the positive integers from 1 to $m \times n$ such that the numbers in each row have a constant sum and the numbers in each column have a constant sum (although the row sum need not equal the column sum). Shown below is a 3×5 magic rectangle with the integers 1 to 15.

6	7	8	9	10
13	3	1	11	12
5	14	15	4	2

How many magic rectangles can be made using the integers 1 to 100?

These problems appear in **One-Hundred Problems Involving the Number 100**, available from NCTM. If you're interested in the other 95%, click the link below: https://www.nctm.org/Store/Products/One-Hundred-Problems-Involving-the-Number-100/

